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1 CES Utility

In many economic textbooks the constant-elasticity-of-substitution (CES) utility function is
defined as:

U(x, y) = (αxρ + (1− α)yρ)1/ρ

It is a tedious but straight-forward application of Lagrangian calculus to demonstrate that the
associated demand functions are:

x(px, py,M) =
(

α

px

)σ
M

ασp1−σ
x + (1− α)σp1−σ

y

and

y(px, py,M) =
(

1− α

py

)σ
M

ασp1−σ
x + (1− α)σp1−σ

y

.

The corresponding indirect utility function has is:

V (px, py,M) = M
(
ασp1−σ

x + (1− α)σp1−σ
y

) 1
σ−1

Note that U(x, y) is linearly homogeneous:

U(λx, λy) = λU(x, y)

This is a convenient cardinalization of utility, because percentage changes in U are
equivalent to percentage Hicksian equivalent variations in income. Because U is linearly
homogeneous, V is homogeneous of degree one in M :

V (px, py, λM) = λV (px, py,M)

and V is homogeneous of degree -1 in p:

V (λpx, λpy,M) =
V (px, py,M)

λ
.

Furthermore, linear homogeneity permits us to form an exact price index corresponding to
the cost of a unit of utility:

e(px, py) =
(
ασp1−σ

x + (1− α)σp1−σ
y

) 1
1−σ

The indirect utility function can then be written:

V (px, py,M) =
M

e(px, py)
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Conceptually, this equation states that the utility which can be realized with income M and
prices px and py is equal to the income level divided by the unit cost of utility. The key idea is
that when the underlying is linearly homogeneous, utility can be represented like any other good
in the economy. Put another way, without loss of generality, we can thing of each consumer
demanding only one good.
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2 CES Technology

In the representation of technology, we have a set of relationships which are directly analogous to
the CES utility function. These relationships are based on the cost and compensated demand
functions. If we have a CES production function of the form:

y(K, L) = φ (βKρ + (1− β)Lρ)1/ρ

the unit cost function then has the form:

c(pK , pL) =
1
φ

(
βσp1−σ

K + (1− β)σp1−σ
L

) 1
1−σ

and associated demand functions are:

K(pK , pL, y) =
(

y

φ

)(
βφc(pK , pL)

pK

)σ

and

L(pK , pL, y) =
(

y

φ

)(
(1− β)φc(pK , pL)

pL

)σ

.

In most large-scale applied general equilibrium models, we have many function parameters
to specify with relatively few observations. The conventional approach is to calibrate functional
parameters to a single benchmark equilibrium. For example, if we have benchmark estimates for
output, labor, capital inputs and factor prices , we calibrate function coefficients by inverting the
factor demand functions:1

θ =
p̄KK̄

p̄KK̄ + p̄LL̄
, ρ =

σ − 1
σ

, β =
p̄KK̄1/σ

p̄KK̄1/σ + p̄LL̄1/σ

and
φ = ȳ

[
βK̄ρ + (1− β)L̄ρ

]−1/ρ

1I wish to thank Professor Olivier de La Grandville for correcting an error in the expression for β in an earlier
version of these notes.
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Exercises

1. Mikki once lived in Boulder and spent 30% of her income for rent, 10% for food and 60%
for skiing. She then moved to Georgetown where rent and food prices are identical to
Boulder. In Georgetown, however, Mikki discovered that the quality-adjusted cost of skiing
was ten-times the cost of skiing in Boulder. She adopted a lifestyle in which she spend only
30% of her income on skiing. Suppose that her preferences are characterized by a CES
utility function. What values of α and σ describe Mikki’s utility function?

2. What fraction of Mikki’s income does she spend on rent in Georgetown?

3. How much larger would Mikki’s income need to be to compensate for the higher cost of
skiing such that she would be indifferent between living in Boulder or Georgetown.

4



3 The Calibrated Share Form

Calibration formulae for CES functions are messy and difficult to remember. Consequently, the
specification of function coefficients is complicated and error-prone. For applied work using
calibrated functions, it is much easier to use the “calibrated share form” of the CES function. In
the calibrated form, the cost and demand functions explicitly incorporate

• benchmark factor demands

• benchmark factor prices

• the elasticity of substitution

• benchmark cost

• benchmark output

• benchmark value shares

In this form, the production function is written:

y = ȳ

[
θ

(
K

K̄

)ρ

+ (1− θ)
(

L

L̄

)ρ]1/ρ

The only calibrated parameter, θ, represents the value share of capital at the benchmark
point, i.e.

θ =
p̄KK̄

p̄KK̄ + p̄LL̄

The corresponding cost functions in the calibrated form is written:

c(pK , pL) = c̄

[
θ

(
pK

p̄K

)1−σ

+ (1− θ)
(

pL

p̄L

)1−σ
] 1

1−σ

where
c̄ = p̄LL̄ + p̄KK̄

and the compensated demand functions are:

K(pK , pL, y) = K̄
y

ȳ

(
p̄K c

pK c̄

)σ

and

L(pK , pL, y) = L̄
y

ȳ

(
c p̄L

c̄ pL

)σ

Normalizing the benchmark utility index to unity, the utility function in calibrated share
form is written:

U(x, y) =
[
θ
(x

x̄

)ρ

+ (1− θ)
(

y

ȳ

)ρ]1/ρ

The unit expenditure function can be written:

e(px, py) =

[
θ

(
px

p̄x

)1−σ

+ (1− θ)
(

py

p̄y

)] 1
1−σ

,
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the indirect utility function is:

V (px, py,M) =
M

M̄e(px, py)
,

and the demand functions are:

x(px, py,M) = x̄ V (px, py,M)
(

e(px, py)p̄x

px

)σ

and

y(px, py,M) = ȳ V (px, py,M)
(

e(px, py)p̄y

py

)σ

.

The calibrated form extends directly to the n-factor case. An n-factor production function is
written:

y = f(x) = ȳ

[∑
i

θi

(
xi

x̄i

)ρ
]1/ρ

and has unit cost function:

C(p) = C̄

[∑
i

θi

(
pi

p̄i

)1−σ
] 1

1−σ

and compensated factor demands:

xi = x̄i
y

ȳ

(
C p̄i

C̄ pi

)σ
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Exercises

1. Show that given a generic CES utility function:

U(x, y) = (αρ + (1− α)yρ)1/ρ

can be represented in share form using:

x̄ = 1, ȳ = 1, p̄x = tα, p̄y = t(1− α), M̄ = t.

for any value of t > 0.

2. Consider the utility function defined:

U(x, y) = (x− a)α(y − b)1−α

A benchmark demand point with both prices equal and demand for y equal to twice the
demand for x. Find values for which are consistent with optimal choice at the benchmark.
Select these parameters so that the income elasticity of demand for x at the benchmark
point equals 1.1.

3. Consider the utility function:

U(x, L) = (αLρ + (1− α)xρ)1/ρ

which is maximized subject to the budget constraint:

pxx = M + w(L̄− L)

in which M is interpreted as non-wage income, w is the market wage rate. Assume a
benchmark equilibrium in which prices for x and L are equal, demands for x and L are
equal, and non-wage income equals one-half of expenditure on x. Find values of α and ρ
consistent with these choices and for which the price elasticity of labor supply equals 0.2.

4. Consider a consumer with CES preferences over two goods. A price change makes the
benchmark consumption bundle unaffordable, yet the consumer is indifferent. Graph the
choice. Find an equation which determines the elasticity of substitution as a function of the
benchmark value shares. (You can write down the equation, but it cannot be solved in
closed form.)

5. Consider a model with three commodities, x, y and z. Preferences are CES. Benchmark
demands and prices are equal for all goods. Find demands for x, y and z for a doubling in
the price of x as a function of the elasticity of substitution.

6. Consider the same model in the immediately preceeding question, except assume that
preferences are instead given by:

U(x, y, z) = (β min(x, y)ρ + (1− β)zρ)1/ρ

Determine β from the benchmark, and find demands for x, y and z if the price of x doubles.

7. Consider a two-period model in which consumers maximizes the discounted present value of
utility:

U(c1, c2) =
c1−θ
1

1− θ
+ β

c1−θ
2

1− θ
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subject to the budget constraint:

c1 +
c2

1 + r
= 1 +

1
1 + r

in which β is the discount factor, θ is the intertempoal elasticity parameter and r is the
given interest rate.

Use the calibrated share formulation to show (on inspection) that the equivalent variation
of a change in the interest rate from r̄ to r is equal to:

EV = M/M̄ − 1 =
(

2 + r

2 + r̄

)(
1 + r̄

1 + r

)(
1 + β1/θ(1 + r)1/θ−1

1 + β1/θ(1 + r̄)1/θ−1

)θ/(1−θ)

− 1
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4 Flexibility and Non-Separable CES

We let πi denote the user price of the ith input, and let xi(π) be the cost-minizing demand for
the ith input. The reference price and quantities are π̄i and x̄i. One can think of set i as
{K, L, E, M} but the methods we employ may be applied to any number of inputs. Define the
reference cost, and reference value share for ith input by C̄ and θi, where

C̄ ≡
∑

i

π̄ix̄i

and
θi ≡

πix̄i

C̄

The single-level constant elasticity of substitution cost function in calibrated form is written:

C(π) = C̄

(∑
i

θi

(
πi

π̄i

)1−σ
) 1

1−σ

Compensated demands may be obtained from Shephard’s lemma:

xi(π) =
∂C

∂πi
≡ Ci = x̄i

(
C(π)

C̄

π̄i

πi

)σ

Cross-price Allen-Uzawa elasticities of substitution (AUES) are defined as:

σij ≡
CijC

CiCj

where

Cij ≡
∂2C(π)
∂πi ∂πj

=
∂xi

∂πj
=

∂xj

∂πi

For single-level CES functions:
σij = σ ∀i 6= j

The CES cost function exibits homogeneity of degree one, hence Euler’s condition applies to
the second derivatives of the cost function (the Slutsky matrix):∑

j

Cij(π) πj = 0

or, equivalently: ∑
j

σijθj = 0

The Euler condition provides a simple formula for the diagonal AUES values:

σii =
−
∑

j 6=i σijθj

θi

As an aside, note that convexity of the cost function implies that all minors of order 1 are
negative, i.e. σii < 0 ∀i. Hence, there must be at least one positive off-diagonal element in each
row of the AUES or Slutsky matrices. When there are only two factors, then the off-diagonals
must be negative. When there are three factors, then only one pair of negative goods may be
complements.

Let:
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k index a second-level nest

sik denote the fraction of good i inputs assigned to the kth nest

ωk denote the benchmark value share of total cost which enters through the kth nest

γ denote the top-level elasticity of substitution

σk denote the elasticity of substitution in the kth aggregate

pk(π) denote the price index associated with aggregate k, normalized to equal unity in the
benchmark, i.e.:

pk(π) =

[∑
i

sikθi

ωk

πi

π̄i
)1−σk

] 1
1−σk

The two-level nested, nonseparable constant-elasticity-of-substitution (NNCES) cost
function is then defined as:

C(π) = C̄

(∑
k

ωkpk(π)1−γ

) 1
1−γ

Demand indices for second-level aggregates are needed to express demand functions in a
compact form. Let zk(π) denote the demand index for aggregate k, normalized to unity in the
benchmark; i.e.

zk(π) =
(

C(π)
C̄

1
pk(π)

)γ

Compensated demand functions are obtained by differentiating C(π). In this derivative, one
term arise for each nest in which the commodity enters, so:

xi(π) = x̄i

∑
k

zk(π)
(

pk(π)π̄i

πi

)σk

= x̄i

∑
k

(
C(π)

C̄

1
pk(π)

)γ (
pk(π)π̄i

πi

)σk

Simple differentiation shows that benchmark cross-elasticities of substitution have the form:

σij = γ +
∑

k

(σk − γ)siksjk

ωk

Given the benchmark value shares θi and the benchmark cross-price elasticities of
substitution, σij , we can solve for values of sik, ωk, σk and γ. A closed-form solution of the
calibration problem is not always practical, so it is convenient to compute these parameters using
a constrained nonlinear programming algorithm, CONOPT, which is available through GAMS,
the same programming environment in which the equilibrium model is specified. Perroni and
Rutherford [1995] prove that calibration of the NNCES form is possible for arbitrary dimensions
whenever the given Slutsky matrix is negative semi-definite. The two-level (N ×N) function is
flexible for three inputs; and although we have not proven that it is flexible for 4 inputs, the only
difficulties we have encountered have resulted from indefinite calibration data points.

Two GAMS programs are listed below. The first illustrates two analytic calibrations of the
three-factor cost function. The second illustrates the use of nonlinear programming to calibrate a
four-factor cost function.(See Rutherford [1999] for an introduction to MPSGE.)
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$TITLE Two nonseparable CES calibrations for a 3-input cost function.

* Model-specific data defined here:

SET i Production input aggregates / A,B,C /; ALIAS (i,j);

PARAMETER

theta(i) Benchmark value shares /A 0.2, B 0.5, C 0.3/

aues(i,j) Benchmark cross-elasticities (off-diagonals) /

A.B 2

A.C -0.05

B.C 0.5 /;

* Use an analytic calibration of the three-factor CES cost

* function:

ABORT$(CARD(i) <> 3) "Error: not a three-factor model!";

* Fill in off-diagonals:

aues(i,j)$aues(j,i) = aues(j,i);

* Verify that the cross elasticities are symmetric:

ABORT$SUM((i,j), ABS(aues(i,j)-aues(j,i))) " AUES values non-symmetric?";

* Check that all value shares are positive:

ABORT$(SMIN(i, theta(i)) <= 0) " Zero value shares are not valid:",THETA;

* Fill in the elasticity matrices:

aues(i,i) = 0; aues(i,i) = -SUM(j, aues(i,j)*theta(j))/theta(i); DISPLAY aues;

SET n Potential nesting /N1*N3/

k(n) Nesting aggregates used in the model

i1(i) Good fully assigned to first nest

i2(i) Good fully assigned to second nest

i3(i) Good split between nests;

SCALAR assigned /0/;

PARAMETER

esub(*,*) Alternative calibrated elasticities

shr(*,i,n) Alternative calibrated shares

sigma(n) Second level elasticities

s(i,n) Nesting assignments (in model)

gamma Top level elasticity (in model);

* First the Leontief structure:

esub("LTF","GAMMA") = SMAX((i,j), aues(i,j));

esub("LTF",n) = 0;

LOOP((i,j)$((aues(i,j) = esub("LTF","GAMMA"))*(NOT assigned)),
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i1(i) = YES;

i2(j) = YES;

assigned = 1;

);

i3(i) = YES$((NOT i1(i))*(NOT i2(i)));

DISPLAY i1,i2,i3;

LOOP((i1,i2,i3),

shr("LTF",i1,"N1") = 1;

shr("LTF",i2,"N2") = 1;

shr("LTF",i3,"N1") = theta(i1)*(1-aues(i1,i3)/aues(i1,i2)) /

( 1 - theta(i3) * (1-aues(i1,i3)/aues(i1,i2)) );

shr("LTF",i3,"N2") = theta(i2)*(1-aues(i2,i3)/aues(i1,i2)) /

( 1 - theta(i3) * (1-aues(i2,i3)/aues(i1,i2)) );

shr("LTF",i3,"N3") = 1 - shr("LTF",i3,"N1") - shr("LTF",i3,"N2");

);

ABORT$(SMIN((i,n), shr("LTF",i,n)) < 0) "Benchmark AUES is indefinite.";

* Now specify the two-level CES function:

esub("CES","GAMMA") = SMAX((i,j), aues(i,j));

ESUB("CES","N1") = 0;

LOOP((i1,i2,i3),

shr("CES",i1,"N1") = 1;

shr("CES",i2,"N2") = 1;

esub("CES","N2") = (aues(i1,i2)*aues(i1,i3)-aues(i2,i3)*aues(i1,i1)) /

(aues(i1,i3)-aues(i1,i1));

shr("CES",i3,"N1") =

(aues(i1,i2)-aues(i1,i3)) / (aues(i1,i2)-aues(i1,i1));

shr("CES",i3,"N2") = 1 - shr("CES",i3,"N1");

);

ABORT$(SMIN(n, esub("CES",n)) < 0) "Benchmark AUES is indefinite?";

ABORT$(SMIN((i,n), shr("CES",i,n)) < 0) "Benchmark AUES is indefinite?";

PARAMETER price(i) Price indices used to verify calibration,

aueschk(*,i,j) Check of benchmark AUES values;

price(i) = 1;

$ontext

$MODEL:CHKCALIB

$SECTORS:

Y ! PRODUCTION FUNCTION

D(i)

$COMMODITIES:

PY ! PRODUCTION FUNCTION OUTPUT

P(i) ! FACTORS OF PRODUCTION

PFX ! AGGREGATE PRICE LEVEL

$CONSUMERS:

RA

$PROD:Y s:gamma k.tl:sigma(k)
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O:PY Q:1

I:P(i)#(k) Q:(theta(i)*s(i,k)) k.TL:

$PROD:D(i)

O:P(i) Q:theta(i)

I:PFX Q:(theta(i)*price(i))

$DEMAND:RA

D:PFX

E:PFX Q:2

E:PY Q:-1

$OFFTEXT

$SYSINCLUDE mpsgeset CHKCALIB

SCALAR delta /1.E-5/;

SET function /ltf, ces/;

alias (i,ii);

LOOP(function,

k(n) = YES$SUM(i, shr(function,i,n));

gamma = esub(function,"GAMMA");

sigma(k) = esub(function,k);

s(i,k) = shr(function,i,k);

loop(ii,

price(j) = 1; price(ii) = 1 + delta;

$INCLUDE CHKCALIB.GEN

SOLVE CHKCALIB USING MCP;

aueschk(function,j,ii) = (D.L(j)-1) / (delta*theta(ii));

));

aueschk(function,i,j) = aueschk(function,i,j) - aues(i,j);

DISPLAY aueschk;

* Evaluate the demand functions:

$LIBINCLUDE plot

SET pr Alternative price levels /pr0*pr10/;

PARAMETER

demand(function,i,pr) Demand functions

dplot(pr,function) Demand function comparison

loop(ii,

LOOP(function,

k(n) = YES$SUM(i, shr(function,i,n));

gamma = esub(function,"GAMMA");

sigma(k) = esub(function,k);

s(i,k) = shr(function,i,k);

LOOP(pr,

price(j) = 1;

price(ii) = 0.2 * ORD(pr);

$INCLUDE CHKCALIB.GEN

SOLVE CHKCALIB USING MCP;

demand(function,ii,pr) = D.L(ii);

dplot(pr,function) = D.L(ii);

);

13



);

* Display the comparisons:

$LIBINCLUDE PLOT dplot

);

DISPLAY demand;
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$TITLE Numerical calibration of Nested CES from KLEM elasticities

SET i Production input aggregates / K, L, E, M/; ALIAS (i,j);

* Model-specific data defined here:

PARAMETER

theta(i) Benchmark value shares /K 0.2, L 0.4, E 0.05, M 0.35/

aues(i,j) Benchmark cross-elasticities (off-diagonals) /

K.L 1

K.E -0.1

K.M 0

L.E 0.3

L.M 0

E.M 0.1 /;

SCALAR epsilon Minimum value share tolerance /0.001/;

* Fill in off-diagonals:

aues(i,j)$aues(j,i) = aues(j,i);

* Verify that the cross elasticities are symmetric:

ABORT$SUM((i,j), ABS(aues(i,j)-aues(j,i))) " AUES values non-symmetric?";

* Check that all value shares are positive:

ABORT$(SMIN(i, theta(i)) le 0) " Zero value shares are not valid:",theta;

* Fill in the elasticity matrices:

aues(i,i) = 0; aues(i,i) = -SUM(j, aues(i,j)*theta(j))/theta(i); DISPLAY aues;

* Define variables and equations for NNCES calibration:

SET n Nests within the two-level NNCES function /N1*N4/,

k(n) Nests which are in use;

VARIABLES

S(i,n) Fraction of good I which enters through nest N,

SHARE(n) Value share of nest N,

SIGMA(n) Elasticity of substitution within nest N,

GAMMA Elasticity of substitution at the top level,

OBJ Objective function;

POSITIVE VARIABLES S, SHARE, SIGMA, GAMMA;

EQUATIONS

SDEF(i) Nest shares must sum to one,

TDEF(n) Nest share in total cost,

ELAST(i,j) Consistency with given AUES values,

OBJDEF Maximize concentration;

ELAST(i,j)$(ORD(i) > ORD(j))..
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aues(i,j) =E= GAMMA +

SUM(k, (SIGMA(k)-GAMMA)*S(i,k)*S(j,k)/SHARE(k));

TDEF(k).. SHARE(k) =E= SUM(i, theta(i) * S(i,k));

SDEF(i).. SUM(n, S(i,n)) =E= 1;

* Maximize concentration at the same time keeping the elasticities

* to be reasonable:

OBJDEF.. OBJ =E= SUM((i,k),S(i,k)*S(i,k))

- SQR(GAMMA) - SUM(k, SQR(sigma(k)));

MODEL CESCALIB /ELAST, TDEF, SDEF, OBJDEF/;

* Apply some bounds to avoid divide by zero:

SHARE.LO(n) = epsilon;

SCALAR solved Flag for having solved the calibration problem /0/

minshr Minimum share in candidate calibration;

SET tries Counter on the number of attempted calibrations /T1*T10/;

OPTION SEED=0;

LOOP(tries$(NOT solved),

* Initialize the set of active nests and the bounds:

k(n) = YES;

S.LO(i,n) = 0; S.UP(i,n) = 1;

SHARE.LO(n) = epsilon; SHARE.UP(n) = 1;

SIGMA.LO(n) = 0; SIGMA.UP(n) = +INF;

* Install a starting point:

SHARE.L(k) = MAX(UNIFORM(0,1), epsilon);

S.L(i,k) = UNIFORM(0,1);

GAMMA.L = UNIFORM(0,1);

SIGMA.L(k) = UNIFORM(0,1);

SDEF.M(i) = 0; TDEF.M(k) = 0; ELAST.M(i,j) = 0;

SOLVE CESCALIB USING NLP MAXIMIZING OBJ;

solved = 1$(CESCALIB.MODELSTAT LE 2);

IF (solved,

minshr = SMIN(k, SHARE.L(k)) - epsilon;

IF (minshr EQ 0,

k(n)$(SHARE.L(n) = epsilon) = NO;

S.FX(i,n)$(not k(n)) = 0;

SHARE.FX(n)$(not k(n)) = 0;

SIGMA.FX(n)$(not k(n)) = 0;
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DISPLAY "Recalibrating with the following nests:",k;

SOLVE CESCALIB USING NLP MAXIMIZING OBJ;

IF (cescalib.modelstat gt 2, solved = 0;);

minshr = SMIN(k, SHARE.L(k)) - epsilon;

IF (minshr=0, solved = 0;);

);

);

);

IF (solved, DISPLAY "Function calibrated:",GAMMA.L,SIGMA.L,SHARE.L,S.L;

ELSE DISPLAY "Function calibration fails!";

);
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Figure 1: A Multi-level Nested CES Cost Function

5 Price Elasticities in Nested CES Functions

Suppose that we have a nested cost function of arbitrary depth and complexity. The prices for
goods i and j, pi and pj are arguments of C(p). Assume that the cost function C(p) is nested. In
the simplest two level case, we would have:

C(p) =

(∑
k

θkck(p)1−σ0

)1/1−σ0

in which:

ck(p) =

(∑
i∈Ik

αikp1−σk
i

)1/1−σk

where Ik indicates the set of commodities entering nest k.
In a more general case, we could have cost aggregates as arguments to other cost aggregates.

The figure shown below displays a graph of the nested CES cost function in which we number the
nested cost functions which lead from the top level to nest containing good i as C0 (top level),
C1, . . . , CL.

If we construct the cost function from a calibrated benchmark in which input prices and
total cost are unity , we can scale the benchmark values of the subaggregate cost functions as
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unity and express the demand for good i as:

xi = x̄i

(
CL

pi

)σL
(

CL−1

CL

)σL−1

. . .

(
C0

C1

)σ0

= x̄i p−σL
i Cσ0

0

L∏
n=1

Cσn−σn−1
n

5.1 The Own-Price Elasticity of Demand

By Shephard’s lemma the derivative of Cn with respect to pi equals the demand for good i per
unit of aggregate n. Recalling that all prices are scaled to unity, the benchmark “quantity” of
aggregate n equals the sum of the inputs which enter directly or indirectly into that cost function:

X̄n =
∑
j∈In

x̄j

and
∂Cn

∂pi

∣∣∣∣
p=1

=
{

0 i /∈ In
x̄i

X̄n
i ∈ In

We then can compute the compensated own-price elasticity of demand for good i:

ηi ≡
∂xi

∂pi

∣∣∣∣
p=1

= −σL + x̄i

(
σ0 +

L∑
n=1

σn − σn−1

X̄n

)

5.2 The Cross-Price Elasticity of Demand

When we evaluate the elasticity of demand for i with respect to a change in the price of good j,
we can let k denote the deepest price aggregate which contains both pi and pj . (See Figure 1).

The cross derivative can then be computed using the demand function for xi, taking into
account the impact of pj on Ck, Ck−1, . . . , C0:

∂xi

∂pj

∣∣∣∣
p=1

= x̄i

[
σ0

∂C0

∂pj
+

k∑
n=1

(σn − σn−1)
∂Cn

∂pj

]

One means of representing the dependence of xi on pj is with the Allen-Uzawa
elasticity-of-substitution which:

σij ≡
∂xi

∂pj

C0

xixj
= σ0 +

k∑
n=1

σn − σn−1

Xn

As a logical check on this elasticity, consider two special cases:

1. σn = σ0 ∀n
This then leads to single level CES, impling a constant cross elasticity of substitution
between all input pairs.

2. σn = 0 ∀n < k

We then have Leontief demand for aggregate k, implying that the elasticity of substitution
between i and j is given by

σij = σk

N.B. The cross elasticity between i and j is independent of the subnest elasticity for all
nests n > k.
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6 Benchmarking Supply Functions

This section describes how calibrate the fixed factor input for a constant returns to scale CES
technology and obtain an arbitrary price elasticity of supply at a reference point. For
concreteness, consider output as a function of labor and capital inputs. Consider the labor input
to be variable and the capital input to be fixed. We then have a CES cost function which in
equilibrium defines the price of output:

p = c(r, w)

in which w is the exogenous wage rate and r is the residual return to the sector’s fixed factor.
Because this factor is fixed, by Shepard’s lemma we have the following relationship between
output, the supply of the fixed factor and the return to the fixed factor:

y
∂c(r, w)

∂r
= R̄

If we use the calibrated CES cost function of the form:

c(r, w) =
(
θr1−σ + (1− θ)w1−σ

) 1
1−σ

then the calibration problem consists of finding a values for θ and σ for which:

∂y

∂(p/w)
(p/w)

y
= η

at the benchmark point.
Note that we are free to choose units of the specific factor such that its benchmark price is

unity. Hence, when we calibrate the share parameter, we are also determining the supply of the
fixed factor:

R̄ = θȳ

in which we scale the benchmark price of output to unity.
If the relative price of output and the variable factor depart from their benchmark values,

the supply constraint for sector-specific can be inverted to obtain an explicit expression for the
return:

r = p

(
θy

R̄

)1/σ

where we have substituted the equilibrium price for the cost function. Substituting back into the
cost function, we have

p1−σ = θp1−σ

(
θy

R̄

) 1−σ
σ

+ (1− θ)w1−σ

or

y = R̄θ
1

σ−1

[
1− (1− θ)

(
w

p

)1−σ
] σ

1−σ

Differentiating this expression with respect the relative price of output, and setting all prices
equal to unit, we have:

η =
σ(1− θ)

θ

This equation can be used in a variety of ways to calibrate the supply function. One
approach would be to choose the value share of the fixed factor θ to match the base year profits,
and then assign the elasticity according to:

σ =
θη

(1− θ)
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Alternatively, one choose to use a Cobb-Douglas function and set the specific factor value
share accordingly:

θ =
1

1 + η
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7 Calibration of Short- and Long-Run Elasticities

In a dynamic model it may be helpful to introduce two notions of the elasticity of supply:
short-run and long-run. A simple way to introduce this distinction into a numerical model is to
work with a three factor production function:

y = f(L,K, R)

where L is labor, a production factor which is variable in both the short and long run, K is
capital, a quasi-fixed production factor which is variable in the long run but fixed in the short
run, and R is a sector-specific resource which is fixed in both the short and long run.

We can write the long-run production function as:

y = ȳ

[
θL

(
L

L̄

)ρ

+ θK

(
K

K̄

)ρ

+ (1− θL − θK)
]1/ρ

The R input does not appear in the calibrated production function because we have assumed
that R = R̄. In the short-run model, we have:

y = ȳ

[
θL

(
L

L̄

)ρ

+ (1− θL)
]1/ρ

If the short-run elasticity of supply is given by ηS , and the labor value share (θL) is given in
the benchmark data, we can then calibrate the elasticity of substitution to match these inputs:

σ = ηS
1− θL

θL

Let us assume that while the labor value share is observed (employment statistics are
commonly available for many secttors and regions), but the allocation of the remaining value
added is not known with certainty. We can take advantage of this uncertainty to calibrate the
long-run supply response by choosing the capital value as:

θK =
ηL

σ + ηL
− θL

given the value of σ previously calibrated. (It can be shown that when ηL > ηS , we find that
θK < 1− θL.)
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8 The GEMTAP Final Demand System

Following Ballard, Fullerton, Shoven and Whalley (BFSW), we consider a representative agent
whose utility is based upon current consumption, future consumption and current leisure.
Changes in future consumption; in this static framework are associated with changes in the level
of savings. There are three prices which jointly determine the price index for future consumption.
These are:

PI the composite price index for investment goods

PK the composite rental price for capital services

PC the composite price of current consumption.

All of these prices equal unity in the benchmark equilibrium.
Capital income in each future year finances future consumption, which is expected to cost

the same as in the current period, PC (static expectations). The consumer demand for savings
therefore depends not only on PI , but also on PK and PC , namely:

PS =
PIPC

PK

The price index for savings is unity in the benchmark period. In a counter-factual equilibrium,
however, we would expect generally that

PS 6= PI

. When these price indices are not equal, there is a virtual tax payment ; associated with
savings demand.

Following BFSW, we adopt a nested CES function to represent preferences. In this function,
at the top level demand for savings (future consumption) trades off with a second CES aggregate
of leisure and current consumption. These preferences can be summarized with the following
expenditure function:

PU =
[
αPH

1−σS + (1− α)PS
1−σS

] 1
1−σS

Preferences are homothetic, so we have defined PU as a linearly homogeneous cost index for
a unit of utility. We conveniently scale this price index to equal unity in the benchmark. In this
definition,α is the benchmark value share for current consumption (goods and leisure). PH is a
compositive price for current consumption defined as:

PH =
[
βP`

1−σL + (1− β)PC
1−σL

] 1
1−σL

in which β is the benchmark value share for leisure within current consumption.
Demand functions are:

S = S0

(
PU

PF

)σS I

I0PU
,

C = C0

(
PH

PC

)σL
(

PU

PH

)σS I

I0PU
,

and

` = `0

(
PH

PL

)σL
(

PU

PH

)σS I

I0PU
.

Demands are written here in terms of their benchmark values (S0, C0 and `0) and current
and benchmark income (I and I0).
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There are four components in income. The first is the value of labor endowment (E),
defined inclusive of leisure. The second is the value of capital endowment (K). The third is all
other income (M). The fourth is the value of virtual tax revenue; associated with differences
between the shadow price of savings and the cost of investment.

I = PLE + PKK + M + (PS − PI)S

The following parameter values are specified exogenously:

ζ = 1.75 is the ratio of labor endowment to labor supply, ζ ≡ E
L0

, where L0 is the benchmark labor
supply. Labor supply and ζ also define benchmark leisure demand, `0 = L0(ζ − 1).

ξ = 0.15 is the uncompensated elasticity of labor supply with respect to the net of tax wage, i.e.

ξ =
∂L

∂PL

PL

L
=

∂(E − `)
∂PL

PL

L
= − ∂`

∂PL

PL

L

η = 0.4 is the elasticity of savings with respect to the return to capital:

η ≡ ∂S

∂PK

S

PK

Shephard’s lemma applied at benchmark prices provides the following identities which are
helpful in deriving expressions for η and ξ:

∂PU

∂PH
= α,

∂PU

∂PS
= 1− α,

∂PH

∂PL
= β,

∂PH

∂PC
= 1− β

It is then a relatively routine application of the chain rule to show that:

ξ = (ζ − 1)
[
σL + β(σS − σL)− αβ(σS − 1)− E

I0

]
and

η = σSα +
K

I0

The expression for η does not involve σL, so we may first solve for σS and use this value in
determining σL:

σS =
η − K

I0

α

and

αL =
ξ

ζ−1 − σSβ(1− α)− αβ + E
I0

1− β
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$TITLE A Maquette Illustrating Labor Supply / Savings Demand Calibration

* Exogenous elasticity:

SCALAR XI UNCOMPENSATED ELASTICITY OF LABOR SUPPLY /0.15/,

ETA ELASTICITY OF SAVINGS WRT RATE OF RETURN /0.40/,

ZETA RATIO OF LABOR ENDOWMENT TO LABOR SUPPLY /1.75/;

* Benchmark data:

SCALAR C0 CONSUMPTION /2.998845E+2/,

S0 SAVINGS /70.02698974/,

LS0 LABOR SUPPLY / 2.317271E+2/,

K0 CAPITAL INCOME /93.46960577/,

PL0 MARGINAL WAGE /0.60000000/;

* Calibrated parameters:

SCALAR EL0 LABOR ENDOWMENT

L0 LEISURE DEMAND

M0 NON-WAGE INCOME

I EXTENDED GROSS INCOME

ETAMIN SMALLEST PERMISSIBLE VALUE FOR ETA,

XIMIN SMALLEST PERMISSIBLE VALUE FOR XI,

ALPHA CURRENT CONSUMPTION VALUE SHARE

BETA LEISURE VALUE SHARE IN CURRENT CONSUMPTION

SIGMA_L ELASTICITY OF SUBSTITUTION WITHIN CURRENT CONSUMPTION

SIGMA_S ELASTICITY OF SUBSTITUTION - SAVINGS VS CURRENT CONSUMPTION

TS SAVINGS PRICE ADJUSTMENT;

LS0 = LS0 * PL0;

EL0 = ZETA * LS0;

L0 = EL0 - LS0;

M0 = C0 + S0 - LS0 - K0;

I = L0 + C0 + S0;

BETA = L0 / (C0 + L0);

ALPHA = (L0 + C0) / I;

SIGMA_S = (ETA - K0 / I) / ALPHA;

ETAMIN = K0 / I;

ABORT$(SIGMA_S LT 0) " Error: cannot calibrate SIGMA_S", ETAMIN;

SIGMA_L = (XI*(LS0/L0)-SIGMA_S*BETA*(1-ALPHA)-ALPHA*BETA+EL0/I)/(1-BETA);

XIMIN = -(L0/LS0) * (- SIGMA_S * BETA * (1-ALPHA) - ALPHA*BETA + EL0/I);

ABORT$(SIGMA_L LT 0) " Error: cannot calibrate SIGMA_L", XIMIN;

DISPLAY "Calibrated elasticities:", SIGMA_S, SIGMA_L;

$ONTEXT

$MODEL:CHKCAL

$COMMODITIES:

PL

PK

PC

PS
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$SECTORS:

Y

S

$CONSUMERS:

RA

$PROD:Y

O:PC Q:(K0+LS0-S0)

I:PL Q:(LS0-S0)

I:PK Q:K0

$PROD:S

O:PS A:RA T:TS

I:PL

$DEMAND:RA s:SIGMA_S a:SIGMA_L

E:PC Q:M0

E:PL Q:EL0

E:PK Q:K0

D:PS Q:S0

D:PC Q:C0 a:

D:PL Q:L0 a:

$OFFTEXT

$SYSINCLUDE mpsgeset CHKCAL

S.L = S0;

TS = 0;

* VERIFY THE BENCHMARK:

CHKCAL.ITERLIM = 0;

$INCLUDE CHKCAL.GEN

SOLVE CHKCAL USING MCP;

PL.L = 1.001;

CHKCAL.ITERLIM = 0;

$INCLUDE CHKCAL.GEN

SOLVE CHKCAL USING MCP;

* Compute induced changes in labor supply using the labor market

* "marginal", PL.M. This marginal returns the net excess supply of

* labor at the given prices. We started from a balanced benchmark,

* with no change in labor demand (the iteration limit was zero).

* Hence, PL.M returns the magnitude of the change in labor supply.

* We multiply by the benchmark wage (1) and divide by the benchmark

* labor supply (LS0) to produce a finite difference approximation

* of the elasticity:

DISPLAY "CALIBRATION CHECK -- THE FOLLOWING VALUES SHOULD BE IDENTICAL:", XI;

XI = (PL.M / 0.001) * (1 / LS0);

DISPLAY XI;

PL.L = 1.0;
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* CHECK THE ELASTICITY OF SAVINGS WRT RENTAL RATE OF CAPITAL:

PK.L = 1.001;

PS.L = 1 / 1.001;

TS = 1 / 1.001 - 1;

CHKCAL.ITERLIM = 0;

* Compute elasticity of savings with respect to the rental rate of

* capital. This requires some recursion in order to account for the

* effect of changes in savings on effective income. When PK increases,

* PS declines -- there is an effective "subsidy" for saving, paid from

* consumer income. In order to obtain a difference approximation for

* the elasticity of savings response, we need to make sure the virtual

* tax payments are properly handled. In the MPSGE model, this means

* that the level value for S must be adjusted so that it exactly equals

* the savings. We do this recursively:

SET ITER /IT1*IT5/;

PS.M = 1;

LOOP(ITER$(ABS(PS.M) GT 1.0E-8),

$INCLUDE CHKCAL.GEN

SOLVE CHKCAL USING MCP;

S.L = S.L - PS.M;

);

DISPLAY "CALIBRATION CHECK -- THE FOLLOWING VALUES SHOULD BE IDENTICAL:", ETA;

ETA = ((S.L - S0) / 0.001) * (1 / S0);

DISPLAY ETA;
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9 Calibrating the Demand for Bequest

Bequests play an important part in the life-cycle income and expenditures of certain classes of
households (see Kotlikoff and Summers [1981]). Bequests are important for analyzing the
intergenerational impact of economic policy because they provide a mechanism through which
impacts on older generations are transmitted to younger generations.

A simple means of introducing bequests to the OLG exchange model involves the
introduction of a separate “bequest market” for each generation. A representative of generation g
then demands two goods, ûg and bg. The first of these is the composite of lifetime consumption as
defined by the utility function:

max
cg,t

ug (cg,t) =
g+N∑
t=g

(
1

1 + ρ

)t−g c1−θ
g,t

1− θ

s.t.

g+N∑
t=g

ptcg,t ≤
g+N∑
t=g

ptωg,t,

The second represents the amount of bequests to future generations. In this approach, we can
think about the value of bequests as a reduced form which is calibrated to two parameters: the
average bequest rate, β, and the bequest elasticity, ξ. If wealth of generation g is m̄g, we have:

β =
b̄g

m̄g
(1)

and

ξ =
∂bg

∂mg

mg

bg

∣∣∣∣
m̄g,b̄g

. (2)

In order to make the reduced form representation, we model the bequests as a specialized
transfer good that is demanded by generation g and caries the price pb

g. Endowments of this
commodity are fixed and sum to bg, hence pb

g is an index of the aggregate transfer. The
ownership of the bequest good then determines which generations receive the bequest and pb

g,
equal to unity in the baseline, determines the value of the bequest.

We write the utility function for a representative generation g as

u(b, û) =
[
β

1
ν b

ν−1
ν + (1− β)

1
ν û

ν−1
ν

] ν
ν−1

(3)

so the elasticity of substitution, ν, can be used to calibrate the bequest elasticity. The “demand”
for bequests arising from budget-constrained utility maximization on the baseline growth path
provides the following equation:

b =
βm

βpb + (1− β)pν
b

. (4)

Evaluating ∂m/∂pb permits us to express ξ as a function of ν, and we may the invert this
relationship to find the elasticity of substitution as a function of the average bequest rate and the
bequest elasticity:2

ν =
1− ξβ

ξ(1− β)
. (5)

2When the bequest elasticity is unity the ratio of bequest to wealth is constant, and (3) is replaced by a Cobb-
Douglas function with β as the value share of bequests.
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10 Alternative Functional Forms

A well known dimensionless index of second-order curvature is the compensated price elasticity
(CPE), which is defined as:3

σC
ij ≡

∂ lnCi

∂ ln pj
=

Cijpj

Ci
,

and a related measure of second-order curvature is the AUES, which has been already discussed.
This can also be written as

σA
ij =

σC
ij

θj
.

The AUES is a one-input-one-price elasticity of substitution (Mundlak, 1968), since, as the
definition of σA

ij makes clear, it measures the responsiveness of the compensated demand for one
input to a change in one input price. In contrast, the Morishima elasticity of substitution (MES;
Morishima, 1967) constitutes a two-input- one-price elasticity measure, being defined as

σM
ij ≡ ∂ ln(Ci/Cj)

∂ ln(pi/pj)
= σC

ij − σC
jj .

Note that, in general, the MES is not symmetric, i.e. σM
ij 6= σM

ji .
A third type of curvature measure is represented by the class of two-input-two-price

elasticities of substitution, which take the form ∂ ln(Ci/Cj)/∂ ln(pj/pi). One such index is the
shadow elasticity of substitution (SES; Frenger, 1985), which is defined as

σS
ij ≡

θiσ
M
ij + θjσ

M
ji

(θi + θj)
.

When technologies are of the CES type, σA
ij , σM

ij and σS
ij are all identical, but they are generally

different otherwise.

10.1 The Translog Cost Function

The Translog unit cost function is defined as

lnC(p) ≡ ln b0 +
∑

i

bi ln pi +
1
2

∑
ij

aij ln pi ln pj ≡ ln b0 + L(p).

Compensated Demand Functions:

xi(p) =
∂C(p)
∂pi

=
∂ ln C(p)

∂pi
C =

C(p)
pi

bi +
∑

j

aij ln pj


Restrictions: ∑

i

bi = 1;

aij = aji, ∀i, ∀j;∑
j

aij = 0, ∀i.

3This exposition is based on Perroni Rutherford, 1998.
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Calibration:

aij = θiθj(σA
ij − 1), i 6= j;

aii = −
∑
j 6=i

aij , ∀i;

bi = θi −
∑

j

aij ln pj , ∀i;

b0 = C̄e−L(p).

10.2 The Generalized Leontief Cost Function

The Generalized Leontief unit cost function is defined as

C(p) ≡ 1
2

∑
ij

aij
√

pipj .

Compensated Demand Functions:

xi(p) =
∂C(p)
∂pi

=
∑

j

aij

2

√
pj

pi
.

Restrictions:

aij = aji, ∀i,∀j.

Calibration:

aij = 4σA
ij θiθj

C̄
√

pipj
, i 6= j;

aii = 2θi
C̄

pi
−
∑
j 6=i

aij

√
pj

pi
∀i.

10.3 The Normalized Quadratic Cost Function

The Normalized Quadratic unit cost function is defined as

C(p) ≡ 1
2

∑
ij aijpipj∑

i bipi
.

Compensated Demand Functions:

xi(p) =
∂C(p)
∂pi

=

∑
j aijpj − C(p)bi∑

j bjpj

Restrictions:

aij = aji, ∀i, ∀j;

bi ≥ 0, ∀i;∑
i

bi = 1.
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Calibration:

aij =
C̄θiθj

pipj

(
σA

ij

∑
k

bkpk +
bipi

θi
+

bjpj

θj

)
, ∀i, ∀j;

We examined two alternative specifications, one in which bi = θi, and another in which bi = 1/N .
The first specification is reported by Perroni and Rutherford [1998] to produce a more stable
function.

10.4 The Nonseparable Nested CES Cost Function

We restrict our discussion to the case N = 3 (for the general N -input case see Perroni and
Rutherford, 1995), and focus on a particular nesting structure which we call “Lower Triangular
Leontief” (LTL). Let us rearrange indices so that the maximum off-diagonal AUES element is
σA

12. Then the three-input NNCES-LTL cost function can be defined as

C(p) ≡ φ
[
α(a1p1 + a3p3)1−γ + (1− α)(b2p

1−µ
2 + b3p

1−µ
3 )

1−γ
1−µ

] 1
1−γ

.

Compensated Demand Functions: We simplify the algebra by defining price indices for the two
nests:

p13 = a1p1 + a3p3

and

p23 =
[
b2p

1−µ
2 + b3p

1−µ
3

] 1
1−µ

we have:

x1(p) =
∂C(p)
∂p1

= a1αφ

(
C(p)
φp13

)γ

x2(p) =
∂C(p)
∂p2

= b2(1− α)φ
(

C(p)
φp23

)γ (
φp23

p2

)µ

x3(p) =
∂C(p)
∂p3

= a3αφ

(
C(p)
φp13

)γ

+ b3(1− α)φ
(

C(p)
φp23

)γ (
φp23

p3

)µ

Restrictions:
γ ≥ 0;

µ ≥ 0;

φ ≥ 0;

ai ≥ 0, ∀i;

bi ≥ 0, ∀i.

Calibration:

Let us denote with s3 the fraction of the total input of commodity 3 which enters the first
subnest of the structure:

C(p) ≡ φ
[
α(a1p1 + a3p3)1−γ + (1− α)(b2p

1−µ
2 + b3p

1−µ
3 )

1−γ
1−µ

] 1
1−γ

.
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(with (1− s3) representing the fraction entering the second subnest). If we select

γ = σA
12;

µ =
σA

12σ
A
13 − σA

23σ
A
11

σA
13 − σA

11

;

it can be shown that

s3 =
σA

12 − σA
13

σA
12 − σA

11

.

The remaining parameters can then be recovered as follows:

φ = C̄;

α = θ1 + s3θ3

a1 =
θ1

αp1

a3 =
s3θ3

αp3

b2 =
θ2

(1− α)p1−µ
2

b3 =
(1− s3)θ3

(1− α)p1−µ
3
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