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These notes follow the introductory notes and instructions for pre-course preparation that
I sent along with this file. They relate primarily to my sections of the course, which consists of
parts of Monday and Tuesday. You could read through these notes before downloading and
installing GAMS and working though McCarl’s slides, or do some of these things at the same
time. (I believe that I read you were given McCarl’s slides on usingGAMS Studio, if not, I can
send these t00.)

It is important that you read through these notes and perhaps refresh your knowledge of
some of these points. I’ve written these notes in a fairly casual and, to a mathematician, fairly
sloppy way. I am making no attempt at formal rigor here, just trying to remind us of some of the
theory that underlies standard concepts we will use throughout the course.

There will be an emphasis on general-equilibrium problems. You can dust off your
knowledge of Shepard’s lemma and basic duality which you were probably taught at some point,
but never really used. Follow this review, the next part of your preparation for my sections of
the course is my paper “Global Comparative Statics in General Equilibrium: model building
from theoretical foundations” (submitted to the Journal of Global Economic Analysis). This will
introduce you to GAMS code as well.

Consider now a consumer maximizing utility U, which is a function of two goods X, and
X,, subject to a linear budget constraint in which M is income and p, and p, are the prices of the
goods. The consumer can chose not to spend all of M, hence the budget constraint is a weak
inequality, and the consumption of each good must be non-negative.

maxy UX,,X,) subject to G(X ,X,) =M-pX -pX, >0, X,X,>0

How do we solve for the optimal choices of X; and X,? The key is to convert this
programming problem into a system of equations and unknowns. Formally, this is done in steps.
First, the Karush-Kuhn-Tucker theorem turns the programming problem into a square system of
equations. Then the implicit function theorem tells us that these can be converted into n explicit
equations, each as a function of the exogenous parameters only, which in our case we call
demand function, or later cost functions. These demand and cost functions will be the building
blocks of a great deal of what we will do in this course.

Karush-Kuhn-Tucker (KKT) theorem: There exists non-negative constants A and
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B = (H,, B, )such that the necessary condition for a maximum are:

ou + ka—G +p =20 first-order conditions (FOC) for X, and X, (1= 1,2)

0X, 0X,

GX) >0, X >0 primal feasibility

A>0,p>0 dual feasibility

AG(X) = 0 complementary slackness 1 (either G =0 or A = 0)
X, =0 complementary slackness 2 (either p =0 or X =0)

Economists often construct a problem or simply make an implicit assumption that the
optimization problem has an interior solution. In the present case, that means that the budget
constraint holds with equality (all income is spent) and X, and X, are strictly positive. In that
case, i, =W, =0, and A > 0. Later in this review, we will go into the KKT conditions in more
detail and also show that the dual or “slack™ variables p and A have interesting and important

economic interpretations.

Important thing for our purposes: KKT converts an optimization problem into a set of
equations. Here we have five equations in five unknowns:

Equations Unknowns
FOC for X, X,
FOC for X, X,
complementary slackness 1 A
complementary slackness 2 TRV

Implicit function theorem: Subject to some restrictions (the n-equations must be of full rank,
etc.), we can solve the nxn (5x5) KKT conditions to express each of the five endogenous
variables as a functions of the exogenous parameters only. In this case, we get
Marshallian demand functions: demand as a function of prices and income, and these can
be substituted into the utility function to get an indirect utility function.

X, = F/(p,,p,,M) X, = F,(py,p,,M) = U(p,,p,, M) Indirect utility

Alternatively, we can minimize the expenditure necessary to reach a target level of
utility, denoted U*:

minXl’X2 X, + p,X, subject to UX,X)) -U" >0

This allows us to derive Hicksian or Hicks-compensated demand functions: demands as a
function of prices and the target utility level. These can then be substituted into (p, X, + p,X,)
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to get a cost or expenditure function: the minimum cost at prices p,, p, needed to buy U* units of
utility.

X, = H/(p,,p,,U") X, = H,(p;,p,,U") = C(p;,p,,U") cost function

Our next result is usually mentioned only briefly in a standard graduate course in
microeconomic theory, but it turns out to be of immense practical value in formulating
computable general-equilibrium models. Once cost functions for goods in consumption or
factors of production used for producing output are derived, the demands for goods and factors
needed for market-clearing equations are very easily derived.

Envelop theorem => Shepard’s lemma: the partial derivative of a cost function with respect to
a price is the optimal (cost minimizing) level of the good or factor of production needed
to reach the target level of utility or output.

Because C(..) is the minimum cost of production, the X, are chosen optimally. Below, we
will refer to an optimized function as a value function and give a specific example. This has the
important and very useful implication that a change in price has only a first-order (partial
derivative holding input quantities fixed) effect equal to the quantity of the good purchased. The
total derivative allowing optimal substitution among the X; equal to the first-order effect.

Ci = ple(p1=p2n U*) + p2)(2(P1>P2, U*)

0X, o0X.
oCc| _ - ac _ -t |p L+ p, 2 where [ 1=0
op; |- dp,; op; op;
. aXz aXl 2 .. . .
since -—=/—— = MRS = — isa condition of optimality

The right-hand term in brackets is zero as a condition of optimality. This then illustrates
Shepard’s lemma:

X, = 9C . H@p,,p,,U") = optimal level of demand for good X,

1 apl
For production of good X, where w, and w, are the prices of factors of production V; and
V,, and where X* is the level of output level, optimization similarly yields a cost function

C(w;,w,, X") V. = ac = optimal level of demand for factor V,

! ow

As I noted above, this is of great practical value because once the cost function for a good is
derived, Shepard’s lemma allows an easy short-cut to deriving the demand for goods

i
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(consumption) or factors of production (production).

Homogeneity of degree 1 (constant returns to scale): if a utility function or production function
is homogeneous of degree 1, then the cost (or expenditure) function is separable

oc

C(psp,,U") = clp,p)U" X, = U and c(..) is hd1
b;

COw,wy, X*) = c(w,w)X* V, = :—CX and c(.) is hd1
w;

where X; and ¥, are now the total demands for goods/factors as a function of prices and total
utility/output.

KKT conditions, complementarity, and interpretation of slack variables: a simple example

Suppose that a competitive firm produces an output X which it can sell at a fixed price p.
It has a strictly convex (increasing marginal cost) function given by C(X) = aX + BX?. The
optimization problem for the firm is to maximize profits, denoted by =, restricted only by a non-
negativity condition on X.

Maximize profits © =pX - (aX + BX?) st X220

Using the Karush-Kuhn-Tucker theorem, there exits a positive constant p such that the necessary
conditions for the maximum are:

%{_zp_(a+2;3X)+u=o WX =0 p=0 X20

where (o +2BX) is called marginal cost in economics: the cost of producing a little more
output. a is the marginal cost of the first bit of output (marginal cost at X =0). An “interior”
solution with X > 0 and p = 0 will occur if p is greater than a, otherwise X = 0 (the firm does not
produce) and p will be positive:

X=E2 p=0, if p>o, X=0,p=a-p, fpsa

2B

Note here that the dual or slack variable p, when it is positive, has a simple interpretation: it is
the excess of the cost of producing the first bit of output over the price earned. It tells us how
unprofitable this activity or technology is. GAMS will automatically report the value of p as part
of the solution it reports, with the value of p named the “marginal” of the variable.

Optimality (profit maximization) in a production activity requires that marginal cost (mc)
is greater than or equal to price, complementary with the level of production. An (optimal)
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positive output of X means price equals marginal cost. If price is strictly greater than marginal
cost in equilibrium, then output is zero.

In GAMS following a tradition in mathematics, the optimality condition is written as an
inequality and specifies the complementary variable. The multiplier p is created “behind the
scenes” by GAMS. Inequalities in GAMS are always written as greater than or equal to.

mc>p 1 X which is read “the weak inequality is complementary to X’
mc=p => X >0 mc>p => X =0
If the inequality is strict in equilibrium, production is unprofitable and production is zero.

Though the modeler does not specify the slack variable p, it will appear in the GAMS
output file under the name “marginal”. The value of marginal equals p. It follows from the
KKT conditions that if the variable X is strictly positive in the solution, then p=0. If X =0 in
the solution, then p is strictly positive. In other words, p = mc - p, and the slack variable p
measures the amount by which marginal cost exceeds p in equilibrium. Alternatively, p is the
difference between the left and right-hand sides of the weak inequality.

Profit maximization example to illustrate value functions and Shepard’s lemma

Above, we had a profit equation that gives profits as a function of output and three
parameters: w(X, p, o, ). Taking the first-order condition and solving for the optimal X, this
value of X can be substituted back into the profit equation for X to get the optimal value of

profits as a function of the exogenous parameters only. This is referred to as a value function, or
specifically here a profit function (as opposed to profit equation).

n(X,p,a,B) => solve for X from first-order condition %Y =0 = =n(p,a,B)

Assume that our profit-maximization example has an interior solutions so that

x-P"¢ when substituted back into the profit equation gives

F_ (p-o)

4B

_ (o _py2 - (p-a)Y ol (p-a)
T = (p-a)X - BX 25 [3[ 25

gives the optimal (maximum) value of & at (p, a, B)

The envelop theorem and Shepard’s lemma tell us that the derivative of the value (profit)
function must be the optimal supply of X at (p, a, B). This can be easily verified from these last
two equations.



ar _ p-9) _ ¥ supply function X(p, a,B)
dp 2

Market-clearing and complementarity

Complementarity between a weak inequality and a variable also arises in market clearing
equations. Market clearing requires that the value (price times quantity) supplied in a market
equal the value of demand. In the above example, the competitive firm is treating price p as
exogenous, but market clearing conditions are added weak inequalities that we should think of as
associated with the demand price, now an endogenous variable. Let D denote the demand for a
good while X continues to denote supply: pX = pD. Here are three possibilities:

X=D>0 mc=p >0 usual “interior” solution: both X and p >0
X>D>0 mc=p =0 excess supply in equilibrium, X is a “free good”
X=D=0 mc>p >0 X 1s too expensive to produce (covered above)

One possibility that cannot occur is:

X <D mc=p >0 violates optimizing behavior: excess demand will
cause the price to rise

Taken together, the first two possibilities imply that we should model a market-clearing
condition as a weak inequality complementary with the price of the good.

X=>D 1 p which is read “the weak inequality is complementary to p”

When GAMS is given this weak inequality and complementary variable, it will create
equation with a slack variable analogous to the procedure for the pricing equation.

X-D+p=0 pup=0 X D,p,pu 20

X =D = p>0 X>D = p =0
If the inequality is strict in equilibrium, there is excess supply in equilibrium and the price is
zero: X is a free good. In that case, the auxiliary variable p, called the “marginal” in the GAMS
listing file, has a positive value equal to the supply-demand imbalance in equilibrium: p =X - D.

Summing up this and the previous section, we should see that a properly specified
supply-demand market-equilibrium model should have two equations, each specifically
associated with one particular variable. Market equilibrium is the solution to two

complementarity conditions:

mec>p 1 X



X>D 1 p

There are three possible (qualitative) solutions: (a) an interior solution in which both X and p are
strictly positive; (b) a corner solution in which X is a free good; (¢) a corner solution in which X
is not produced. Early in the book, I will present exactly this market-equilibrium problem and
show the three outcomes in GAMS.

KKT conditions derived from a Lagrangean function, complementarity and dual variables

In economics, the KKT conditions for a constrained optimization problem are typically
derived by starting with what is referred to as a Lagranean equation or function (though
Lagrange was a productive guy and this can also refer to quite different things). The equation to
be optimized is the objective function (e.g., utility) followed by the sum of complementary
slackness conditions: the dual variable multiplied by its complementary variable. The dual
variables in economics are referred to as Lagranean multipliers. Let’s take a specific quadratic
utility function

2
U = (0% - BX)) + X,

Economists often (wrongly) fail to bother with the non-negativity conditions on the X, but the
proper Lagrangean equation which goes with this utility function is:

2
U, = (0 X] - BX)) + X, + MM -p X -p,X,) + pX, + kX,

Note especially that, because of the KKT complementary slackness conditions, we will always
have U; = U at the solution. Ignore the non-negativity constraints for the moment. The KKT
conditions as written in economics for X, X,, and A are given by:

oU

_aXl =a, - 2B, X, - Ap; +p, =0
oU

— =1-Ap, + =0

X, Py T 1

ou

H=M_p1Xl _p2X220

If X, and X, are strictly positive at the solution, then p, = pu, = 0, and if the budget constraint is
binding (all income is spent), then the three equations can be solved for the three unknowns,
though economists are often not interested in the solution value of A (but we will see many cases
where it is of great interest).
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In this special case, all income will always be spent so that the budget constraint holds
with equality and A > 0. With each additional unit of X, consumed giving a marginal utility of
one, there is no reason to throw away income. But it may not be the case that both X1 and X2
are consumed; let’s assume that this is the case so that then p, = p, = 0. The second first-order
condition then implies that A = 1/p,. Substituting this into the first equation given the demand for
X1. Multiply this by p1 to get p1 X1, and then substitute that into the budget constraint (third
equation) to solve for X2. If my algebra is right, you should get

oa-p,/p, o-p,/p, oa-p,/p,
X, = T DX = 1’127B pX, = M _1’127[3
x, - M _pmanip
) 23 D, 2B
X, + p,X =p—0t—p1/p2+M_p—a—p1/p2 =M
141 Ay 1 2B 1 28

where the last line verifies that the sum of the expenditures on the two goods equals income.

So we’re finished right? Well, no. Suppose that these equations tell us that the
expenditure on X1 exceeds income. Or suppose the opposite and suppose that expenditure in X1
is less than zero. We will then have a corner solution and this is when the slack variables then y,
and p, come into play. In the first special case, X2 will be zero and p2 will be positive, while in
the second special case, X1 will be zero and pl will be positive. Specifically, the possible
“corner solutions” are

o-p,/
If p PPy o x M x oo, >0
1 1 2 Uy
28 P
o-p,/
If pﬂ<0 => X =0, X = A_l’ u >0
1 1 2 1
28 D,

Or to put it the other way around, the critical condition for an interior solution is that

2BM>Q—&>0 => X,X,>0

Dy Dy

I think that this example shows that problems become a more complicated when we
allow for corner solutions. I also think that it is fair to say that many economists, insisting on
using only analytical methods avoid corner solutions and indeed often fail to check that their
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proposed interior solution is in fact valid. Corner solutions are viewed as an inconvenience to be
avoided. The above case is in fact widely used in industrial organization and in international
trade, and is referred to as “quasi-linear preferences”, where one “outside good” has a constant
marginal utility (X, in our case) and the other good is the one of primary interest (X, in our case).
Invariably, and interior solution is assumed, and parameter restrictions needed to ensure that this
is true are ignored.

But corner solutions are not just an inconvenient or pathological case of no importance.
In many cases, they are vital to the economics of a problem as we shall see. Here are just a
couple of examples before we move on. (A) changes in prices or taxes can lead to switches in
which technologies are and are not used to produce a good like electricity. (B) changes in
transportation costs, tariffs, or technologies can lead to switches in which trade links are active
or inactive in international trade models (e.g., whether or not a particular good is imported by
country i from country j, exported, or non-traded). (C) changes in costs or technologies can lead
to switches in industrial structure, such as firms choosing between exporting to a foreign country
or producing abroad in that country, or licensing to a local firm. (D) individuals or firms decide
whether or not to buy insurance. (E) individuals decide on what assets to hold in a portfolio and
which to avoid (hold zero). All of these examples will be examined in this book.

Exercise 1: Cobb-Douglas production and cost functions

A consumer has a Cobb-Douglas utility function and a linear budget constraint, with income M.

o 1-a
U = l % M = p X, +pX
. l-a P1dy F DAy

(1) show that the optimal shares of income spent on X, and X, are given by a and (1 - o)
respectively; i.e.,

)20
M

o =

(2) derive the Marshallian or uncompensated demand functions for X, and X, :

ij = Di(pppst)

3) derive the Hicksian or compensated demand functions for X, and X :
X, = H(p,,p,,U)

(4) derive the expenditure (cost) function, which gives the minimum expenditure necessary
at prices p, and p, to buy one unit of utility.
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(6)

(7)

®)
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e = e(p,p,) And E = e(p,p,)U

demonstrate Shepard’s lemma: the derivative of the expenditure function with respect to
the price of good 1 gives the Hicksian demand for good i:

de(p,,
x = Qe y o b

i op,
show that in this Cobb-Douglas case that

X, = H(p,,p,,U) = [oe(p,p,)/p]1U = [op,/p,]JU  p, = e(p,p,)
where p, is the “price” (cost) of buying one unit of utility.

derive the indirect utility function, which gives the (maximum) level of utility reached at
prices p, and p, and income M.

Vo= V(pl s Dy M)

demonstrate Roy’s identity:

X, = Dipy,pp, M) = -V, 1V,

Hint: start with the utility function and form the Lagrangean function.

max U = Xlale_a + MM - p X, - p,X)

Take the three first-order conditions for maximization

8U oa-1y1-0

— = aoX, X - =0
ax, 1 2 Py

oU oy -0

— = (1-0)X; X, - A =0
ox, ( )X, X, D>

ou

a = M_pl‘Xl _pZ.XvZ = 0

Divide the second equation by the first to eliminate A, getting an expression for X, in terms of
prices,parameters and X,. Use this to eliminate either X, or X, in equation (3). Rearrange to get
the Marshallian demand functions, the answer to part (b). Rearrange the Marshallian demand
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function to show (a).

Now you can do virtually everything else by making appropriate substitutions.

Alternative: minimize the expenditure necessary to reach a certain level of U.
. ay-1-a
min p, X, + p,X, + WU - XX, )

Take the three first-order conditions for maximization

oE - -

87 :pl_ua)(la 1)(21 o =0
1

oE -

ﬁ =P2-u(1-a)X1aX2“= 0
2

9 _y-xx) " - 0

op

Divide the second equation by the first to eliminate p, getting an expression for X, in terms of
prices,parameters and X,. Use this to eliminate either X, or X, . Rearrange to get the Hicksian
demand functions, the answer to part (c). Put these in the expenditure equation to derive the
expenditure function (d).

Analogy and extension to cost functions for producers with constant-returns technologies

The expenditure function derived above is just a type of cost function: it gives the minimum
expenditure necessary to buy one unit of U. Cost functions for firms are exactly the same, with
different labels on the inputs and outputs. Suppose a firm produces X from inputs L and K (labor
and capital), with the constant-returns technology

L o K 1-a
X=(E)(1_a) C = pL +pK

where p, and p, are the prices of labor and capital and C is cost. Following exactly the same
minimization procedure used above, you should be able to show that the cost function is given

by:

1_
C(pl,pk,X) = C(pl,pk)X = plapk ‘X
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The amount of labor (demand for labor) needed to produce X units of output is then given by
Shepard’s lemma:

-1_1- 1-
L=3,%" ap; pp X = a[pl"pk “/p,]X = ale(p,p)/p )X
1

and similarly for the demand for capital. As above, a gives the share of labor in total
expenditure or cost.

L
c(p;,p)X



