NNNNNNNNNNNNNNNN

GAMS w/ NEOS and Economic Equilibrium
Modeling with Julia/JuMP

Adam Christensen

<«

All the best presentations begin with an outline...

Our goals

Building out GAMS/NEOS capabilities

NEOS Demo .

Extended Economic Modeling julii] %: JUMP
End-to-End Value Proposition

Experimental Projects

Our Goals

e Knowledge base for extended economic modeling

o Model library for multiple languages
o Helper tools/data handling

e End-to-End Value Add

o Data pre-processing tools
o Model output reduction
o Visualization

e FEconomic Software Incubator

N

HOPES

&g

Gettin’ the Goods...

windc.wisc.edu

O

n

Click on “Downloads

WIiNDC Flavors

O O O O

Precompiled GDX

JSON (download as a zip archive)

Re-build your own GDX from source (windc.zip)
All original data source files are available (datasources.zip)

WINDC 1 (RELEASE DATE: DECEMBER 2018)
PRE-COMPILED CORE WINDC DATABASE
WINDC BUILD STREAM PACKAGE

FULL DATA SET

SINGLE DATA SETS

DOWNLOADS

GDX (39.8 MB) JSON (69.2 MB)

windc.zip (84.7 MB)

datasources.zip (157.9 MB)

BEA BEA_2007 CFS USATradeOnline

SGF SEDS PCE NASS

https://windc.wisc.edu/

Releases going forward...

Platform independent (Windows, Mac)

Releases will occur ~1-2 times per year

Data updates and bug reports will be available

WINDC releases will always be tested against different versions of GAMS
Releases will be numbered

Releases going forward...

Platform independent (Windows, Mac)

Releases will occur ~1-2 times per year

Data updates and bug reports will be available

WINDC releases will always be tested against different versions of GAMS
Releases will be numbered

In a nutshell... we want to make it easy for researchers to reference this database
in their own publications

GAMS/NEOS Capabilities

llllllllllllllllllllll

What is NEOS?

Network Enabled Optimization System

neos-server.org

Online access to algorithms that solve many classes of optimization problems
Jobs can be submitted online through a webform

e KESTREL brings your GAMS job to NEOS
GDX results return as expected

' Performance (transit time) penalty - go get 2 cups of coffee

https://neos-server.org/

Building out NEOS

e WINDC members get a base GAMS license to enable NEOS builds

o Email: adam.christensen@wisc.edu

e WINDC/NEOS build requires GAMS 26.1.0
o KESTREL support added for MPSGE models

.- News & Events Products Documentation Resources Community

Documentation = Model Libraries Search

¥ GAMS Documentation 26 26 Distribution

¥ Release Notes

-
e 26.1.0 Major release (February 02, 2019)

» 26.1.0 release
» 25.1 Distribution

Acknowledgments
» 25.0 Distribution
» 24.9 Distribution We would like to thank all of our users who have reported problems and made suggestions for improving this
» 24.8 Distribution release. In particular, we thank Stefano Alva, Adam Christensen, Hanna Donau, Stephen Frank, Anastasis
» 24.7 Distribution Giannousakis, Jan-Erik Justkowiak, David Laudy, Andreas Lundell, Thomas Maindl, Nils Mattus, Scott McDonald,
» 24.6 Distribution Noah Rhodes, Tom Rutherford, and Anna Straubinger.

» 24 & Dictrihutinn

mailto:adam.christensen@wisc.edu

New Developments

e WINDC 2.0 database build stream available very soon! (windc.wisc.edu)
o Updated data (included 2016 data)
o If building locally - compatible back to GAMS 24.3.3 (July 2014)
o More error checking (will stop running if an EXECUTE statement does not finish properly)
o More modular interface (build, sectoral disaggregation, and re-calibration)

Build core WiNDC Database l

Disaggregate into Sectors

Re-Calibrate to Satellite
Data

https://windc.wisc.edu/

New Developments

e WINDC 2.0 database build stream available very soon! (windc.wisc.edu)
Updated data (included 2016 data)

If building locally -- compatible back to GAMS 24.3.3 (July 2014)

More error checking (will stop running if an EXECUTE statement does not finish properly)
More modular interface (build, sectoral disaggregation, and re-calibration)

O O O O

To build the core WINDC database locally:

gams run.gms

To build with NEOS:

gams run.gms --neos=yes

https://windc.wisc.edu/

Sectoral Disaggregation

e Options are: 405, bluenote, nass, embodiedcarbon, example
o 405: full 405 sector disaggregation, not fully functional (small number problems)
o bluenote: electricity power generation, coal mining, petroleum refineries
o nass: farming subsectors (oilseed farming, grain farming, etc.)
o embodiedcarbon: electricity power generation, coal mining, petroleum refineries

To disaggregate the core WiNDC database locally:

gams disagg.gms —--aggr=bluenote

To disaggregate on NEOS:

gams disagg.gms —--aggr=bluenote --neos=yes

Re-Calibration

e Options are: bluenote, nass

o bluenote: calibrate to EIA SEDS data 1997..2014, and 2016
o nass: only 2012 data for now

To re-calibrate the core WINDC database locally:

gams recalibrate.gms --satdata=bluenote --year=XXXX

To re-calibrate the core WINDC database with NEOS:

gams recalibrate.gms --satdata=bluenote --year=XXXX --neos=yes

Quick NEOS Demo

Open to User Feedback...

e Should be easy to use
e Should be flexible to suit user’'s needs
e Must maintain platform independence to a high degree

Feedback: adam.christensen@wisc.edu

mailto:adam.christensen@wisc.edu

Extended Economic Modeling

julia 75 JUMP

<«

e Juliais the base language, JuMP is the math programming package for Julia

Some things...

e Codebase on both change frequently - can be frustrating
o Julia/ JuMP is totally open source

e JuMP offers connections to many solvers

o Cbg, Clp, CPLEX, CSDP, ECOS, FICO Xpress, GLPK, Gurobi, Ipopt, MOSEK, OSQP, SCS, SeDuMi
o Types: LP, QP, NLP, MILP, SOCP, MISOCP, SDP
o Note: PATHsolver jl is “available” but not robust

http://www.juliaopt.org/JuMP.jl/v0.19.0/installation/#Getting-Solvers-1

One nice techie thing...

add OhMyREPL.. then create a startup.jl filein...

~/.julia/config

.. that contains

using OhMyREPL

Adams-MacBook-Pro: julia_tests adam$ vim ~/.julia/config/startup.jl
Adams-MacBook-Pro: julia_tests adam$ julia

Adams-MacBook-Pro: julia_tests adam$ vim ~/.julia/config/startup.jl
Adams-MacBook-Pro: julia_tests adam$ julia

Documentation: https://docs.julialang.org Documentation: https://docs.julialang.org
Type "?" for help, "]?" for Pkg help. Type "?" for help, "]1?" for Pkg help.

Version 1.1.0 (2019-01-21)
Official https://julialang.org/ release

Version 1.1.0 (2019-01-21)
Official https://julialang.org/ release

julia> my_f(x,y) = (x - A2 + (y - 2)2) julia> my_f(x,y) DA2 + (y - 2)A2]}

Getting Data into Julia/JuMP

e Julia/JuMP can approximate “set” notation like GAMS

e Associative arrays (aka “dictionaries”) are the key
o {key:value} pairs

b(j) 'demand at market j in cases'
/ new-york 325
chicago 300
topeka 275 /;

julia> b = parse data("b")

Dict{Any,Any} with 3 entries:
"new-york" => 325.0
"chicago" => 300.0
"topeka" => 275.0

JSON files are good for this

A GAMS

7o JUMP

Getting Data into Julia/JuMP

"b": {
"type": "GamsParameter",
"dimension": 1,
"domain": [
Hj"
1y
"number records": 3,
"text": "demand at market j in cases",
"values": {

"domain": [
"new-york",
"chicago",
"topeka"

1y

"data": [

325.0,
300.0,
275.0

Julia/JuMP Development Cycle

BEGAMS @ python

convert GDX to
JSON

model.gms output GDX

ot decision yariables

76 JUMP

model.jl import JSON parse JSON re-solve

data only, N

**helper function

—>

verify solution

https://github.com/boxblox/gdx2json
https://github.com/boxblox/gdx2json

Mental Mapping

Economic Model Type Optimization Model Type
Linear demand, max social surplus B
Perfectly (in)elastic supply/demand, min
costs QCP
Isoelastic supply/demand, CES, max
social surplus NLP
Partial equilibrium (isoelastic/CES),
feasibility, no fixed variables Constrained Nonlinear System (CNS)

Partial equilibrium (isoelastic/CES),
feasibility, fixed variables

Mixed Complementarity Problem (MCP)

Example Problem

Partial equilibrium (isoelastic supply, CES)
Regional Trade
Differentiated Goods

No Objective Function (Square System)**

**Eixing variables destroys the square-ness in GAMS thanks to the presolver, thus the need for a zero objective function and
the NLP solver (instead of just CNS)

Partial Equilibrium Trade (r>r’) Model

e Supply function (calibrated isoelastic)

| _ (C\T e,
e (Compensated CES demand function Xr,r’:Xr,r’() c.

e Cost function (calibrated CES form) C, =

e Supply & Demand Balancing

variables P (r) Equilibrium price,

Y (r) Equilibrium supply,

C(r) Unit cost,

X(r,rr) Demand

OBJ Vacuous objective;
equations objdef, output, supply, demand, cost; .-G AMS
output (r) .. Y(r) =e= sum(rr, X(r,rr));
supply(r) .. Y(r) =e= y0(r) * P(r)**eta(r):
demand (r,rr) .. X(r,rr) =e= x0(r,rr) * (C(rr)/P(r))**esub(rr) * C(rr)**(-sigma (rr));
cost(r).. C(r) =e= sum(rr, theta(rr,r) * P(r)**(l-esub(r)))**(1l/(l-esub(r)));

m = Model (with optimizer (Ipopt.Optimizer))

@variable(m, P[1 in r], start=1)

@variable(m, Y[i in r], start=y0[i])

@variable(m, C[i in r], start=1l) O J U M P
@variable(m, X[i1i in r, J in r], start=x0[1i,3]) C)C)

@constraint (m, output[i in r], sum(X[i,3J] for J in r) == Y[i])

@NLconstraint (m, supplyli in r], Y[i] == yO0[i] * P[i]"eta[i])

@NLconstraint (m, demand[i in r, J in r], X[i,]J] == x0[i,J] * (C[j]1/P[i])"esub[]j] *
C[3]1” (-sigmalj]))

@NLconstraint (m, cost[j in r], C[]j] == sum(theta[i,]j] * P[j]l"(l-esub[j]) for i in

r)~(1/(l-esub[j])))

More GAMS - Julia/JuMP Examples Online

0 https://qithub.cormn/uw-windc

Markusen's M2-3 model (maximize utility, 2 Cobb-Douglas commodities, with rationing)
Markusen's M2-5 model (maximize utility, 1 good, 1 factor, 1T consumer)

PIESQCP formulation (William Hogan, 1975) (maximize social welfare)

(Spatial) Partial Equilibrium (as seen in this presentation)

More to come...

https://github.com/uw-windc

End-to-End Value

Python/GAMS Workflow...

Complicated Data
Structures...

@ python
l

Write input data (sets,
parameters, etc.) to GDX
(GDXRW)

-

—— pGAMS

l

@, python

Input GDX file

Read in output
GDX (GDXRW)

GAMS Model

Independent
Scenario
Post-Processing

Set enabled
Post-Processing

Automated
visualization,
reporting, etc.

GDX is the primary data container

https://github.com/boxblox/gdxrw
https://github.com/boxblox/gdxrw

GDXRW

Example

-

https://github.com/boxblox/gdxrw/blob/master/example.py

Automated Plot Creation...

200
Volume of data can be enormous
150
, [S | All data read directly from the output GDX
100 — —t — i —

Automation reduces chances of silly errors

-1
020018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030
Year

Advanced Visualization

e (Geocode data on the fly, calculate real distances/times on a road network

Sset key PIzSygmXdMewURGxUD38S2t4VgBQEyVA

execute 'python distance.py —--key=%key% —--input=query.csv
—-—-output=output.csv';

e (Connect data directly to maps to debug modelling errors or present results

Mapping Example

Python, Eolium, Google API

https://pypi.org/project/folium/

WINDC Capabilities

Custom workflows can be designed and implemented

Primary Tools:

GAMS

Julia/JuMP

Python (numpy, scipy, pandas, folium, matlibplot, etc.)
Expanding our visualization capabilities (D3)

https://d3js.org/

Software Incubator

Pilot-Scale Projects

e Pivot Tables

e Graph-based CES syntax

Pivot Tables

e Incredibly useful to reduce data
e Not easy in GAMS (we want to preserve data as 2D)

o GPivot
o Can be executed in from a .gms file
o Reads a GDX for data
o Can pass a query (SQL-like) in order to create differently scoped pivot tables

-

Example

https://github.com/boxblox/gpivot
https://github.com/boxblox/gpivot/blob/master/trnsport_pivot.gms

Graph-Based CES Functions

e CES functions are an economic powerhouse
e Nested CES functions offer even more flexibility

e Plagued by messy algebra
e MPSGE handles this, but is not available for other platforms (Julia/JuMP)

Investigating ways to rapidly define complicated economic functions

Proof of Concept

e Working in the GAMS framework
e Utilize GAMS EMP (symbolic differentiation & reformulation)

Consumer’s Utility Function:

EQUATION objConsumer (h) ;

objConsumer (h) ..

consumerUtility (h) —

=E= --GAMS
sum (s, alpha(s,h)**(1/sigmac(h)) *
(x(s,h))**((sigmac(h)-1) /sigmac (h))) ** (sigmac (h) / (sigmac (h)-1));

Proof of Concept

Define Consumer’s Utility Function with Graph Syntax:

objConsumer (h)

@desub{'consumerUtility':'sigmac (h) '}
@shares{'consumerUtility':'alpha(s,h) '}

{"!copnsumerUtility(h) ':['x(s,h) ']} I = top node

consumerUtility (“h1l”) consumerUtility (“hX")
o(\\hl//) o(\\hX//)
X(“Sl”,“hl”) ... X(“S2”,“hl”) X(\\Sl/I’\\hX/I) ... X(\\SZIII\\hX//)

Proof of Concept

Define Consumer’s Utility Function with Graph Syntax:

objConsumer (h)

{'"!consumerUtility(h)':['"x(s,h) "]} main CES structure
@esub{'consumerUtility':'sigmac (h) "'} define elasticities for each nest level
@shares{'consumerUtility':'alpha(s,h)"'} define share coefficients
consumerUtility (“hl”) consumerUtility (“hX")
o(\\hl//) o(\\hX//)

X(“Sl”,“hl”) ... X(“S2”,“hl”) X(“Sl”,“hx”) ... X(“SZ”,“hX”)

Proof of Concept

Define Consumer’s Utility Function with Graph Syntax:

objConsumer (h)

{'"!consumerUtility(h)':['"x(s,h) "]} main CES structure
@esub{'consumerUtility':'sigmac (h) "'} define elasticities for each nest level
@shares{'consumerUtility':'alpha(s,h)"'} define share coefficients

e pgthOﬂ lOnIy regex string parsing

EQUATION objConsumer (h) ;

objConsumer l(k;) - GOCAMS/EMP VERSION VERIFIED
consumeriEL ity (B) AGAINST PURE MCP FORMULATION
sum (s, alpha(s,h)**(1/sigmac(h)) *

(x(s,h))** ((sigmac(h)-1) /sigmac (h))) ** (sigmac (h) / (sigmac (h)-1));

Thanks.

WINDC wants to work with you

